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ABSTRACT 

The adoption of machine learning (ML) algorithms in education is increasing, aiming to enhance 
teaching, learning, and administrative processes. These algorithms are crucial in personalized learning, 
student performance prediction, and curriculum design. However, their widespread use can lead to 
challenges like bias, lack of transparency, and excessive reliance on automated decisions. Educators 
often need help understanding the inner workings of ML models. This paper examines Explainable AI 
(XAI) as a solution to these issues in education. XAI techniques can provide educators and 
administrators with valuable insights into ML algorithms, facilitating more informed decision-making. 
We discuss the difference between transparent and opaque algorithmic choices and demonstrate the 
tangible benefits of XAI in education. Transparent models enable educators to leverage their expertise 
effectively, discover hidden patterns, and improve student outcomes. 

Keywords: artificial intelligence; explainable artificial intelligence; machine learning; education.   

RESUMO 

A adoção de algoritmos de aprendizado de máquina (ML) na educação está aumentando, com o 
objetivo de aprimorar os processos de ensino, aprendizado e administração. Esses algoritmos são 
cruciais para a aprendizagem personalizada, a previsão do desempenho dos alunos e a elaboração de 
ementas. No entanto, seu uso generalizado pode levar a desafios como parcialidade, falta de 
transparência e dependência excessiva de decisões automatizadas. Os educadores precisam 
geralmente de ajuda para entender o funcionamento interno dos modelos de ML. Este artigo examina 
a IA explicável (XAI) como uma solução para esses problemas na educação. As técnicas de XAI podem 
fornecer aos educadores e administradores percepções valiosas sobre os algoritmos de ML, 
facilitando a tomada de decisões mais informadas. Discutimos a diferença entre escolhas algorítmicas 
transparentes e opacas, demonstrando os benefícios tangíveis da XAI na educação. Os modelos 
transparentes permitem que os educadores aproveitem seus conhecimentos de forma eficaz, 
descubram padrões ocultos e melhorem os resultados dos alunos. 

Palavras-chave: inteligência artificial; inteligência artificial explicável; aprendizado de máquina; 
educação.   
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La adopción de algoritmos de aprendizaje automático (ML) en la educación es cada vez mayor, con el 
objetivo de mejorar los procesos de enseñanza, aprendizaje y administración. Esos algoritmos son 
cruciales para el aprendizaje personalizado, la predicción del rendimiento de los alumnos y el diseño 
de planes de estudio. Sin embargo, su uso generalizado puede plantear problemas como la parcialidad, 
la falta de transparencia y la dependencia excesiva de las decisiones automatizadas. A menudo, los 
educadores necesitan ayuda para comprender el funcionamiento interno de los modelos de ML. Ese 
artículo examina la IA explicable (XAI) como solución a esos problemas en la educación. Las técnicas 
de XAI pueden proporcionar a los educadores y administradores información valiosa sobre los 
algoritmos de ML, facilitando una toma de decisiones más informada. Discutimos la diferencia entre 
opciones algorítmicas transparentes y opacas y demostramos los beneficios tangibles de la XAI en la 
educación. Los modelos transparentes permiten a los educadores disfrutar su experiencia de forma 
eficaz, descubrir patrones ocultos y mejorar los resultados de los estudiantes. 

Palabras clave: inteligencia artificial; inteligencia artificial explicable; aprendizaje automático; 
educación.   

 
INTRODUCTION 

In contemporary educational institutions, relying solely on human decision-making 

can be time-consuming and error-prone. This is particularly true in crucial areas like learning 

environment design and personalized learning path development, where ensuring 

effective and efficient learning is paramount amidst growing student populations and 

diverse learning needs (Zhang; Aslan, 2021). In parallel, educators struggle with heavy 

workloads, managing large class sizes and diverse student needs, often exceeding their 

own capacities (Griffin, 2022). This situation can limit the individualized attention students 

receive, potentially hindering their learning progress. In fact, students might find their 

current learning experience unsustainable in the long term, potentially leading to reduced 

engagement and motivation (Beattie; Thiele, 2016). 

The growing excitement surrounding generative AI (GenAI) technologies, such as 

ChatGPT, has positioned them as potential game-changers in how educators can enhance 

their teaching abilities by providing adaptative teaching strategies and customized 

suggestions (Chiu, 2023). However, educators must recognize that GenAI does not 

represent the next step of AI as an “evolution” of machine learning (ML), a subset of AI 

algorithms and solutions. In fact, it is just another subtype of ML (Nah et al., 2023). A more 

apt analogy would be to compare GenAI to interactive whiteboards and ML to standard 

desktop computers. Much like interactive whiteboards have not entirely replaced desktop 

computers in classrooms but instead found their unique niches, GenAI and ML each have 

distinct applications and strengths. Many tasks are more efficiently executed in the 

classroom on a desktop computer. However, specific scenarios exist where an interactive 
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whiteboard might enhance learning outcomes. This analogy extends to the relationship 

between GenAI and ML: each has its preferred use cases and areas where it excels. 

Regardless, not all educational challenges are best addressed with AI solutions 

similar to ChatGPT. In other words, ChatGPT and its competitors are not one-size-fits-all 

solutions in educational applications. While GenAI excels in generating new content 

instead of predicting, such as creating personalized problem statements, use cases, or 

educational stories (Chiu, 2023), ML analyzes existing educational data to identify patterns 

and inform decisions. ML can be used to develop several applications, such as providing 

personalized learning paths with intelligent tutoring systems, providing immediate and 

tailored feedback to students, predicting students’ grades at the end of their courses 

based on their current trends and performance, automatic content selection for tests and 

classes, automation of quality control for learning artifacts for courses, predicting churn 

rates, predicting student dropout, and automatic recommendation of additional learning 

resources (Korkmaz; Correia, 2019; Bonifro et al., 2020; Luan; Tsai, 2021). Consequently, ML 

algorithms are more suitable for a broader range of AI-related applications in education. 

However, this raises a crucial question: How are these ML algorithms initially assembled in 

educational contexts? 

Predictive ML, similar to experienced educators, utilizes historical data to enhance 

its decision-making capabilities (Korsakiene et al., 2015). Just as educators gain knowledge 

through diverse teaching experiences, observing student behavior, and identifying 

learning patterns over time, ML algorithms learn from past educational data to predict 

future student performance or success. 

Consider, for instance, the development of a student dropout prediction algorithm 

(Bonifro et al., 2020). An experienced educator might find that certain factors influencing 

student dropout are consistent across different schools or curricula, supported by various 

studies within specific educational settings. However, complexity arises: not all schools 

operate identically or share the same resources or data availability regarding these 

influential factors. 

As another illustrative example, consider the development of an algorithm to 

provide personalized learning experiences for students to improve their engagement 

(Nabizadeh et al., 2020). Not all students, courses, and institutions operate in the same 
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way. The impact of these personalized learning experiences on student engagement might 

vary significantly between different grade levels, subject areas, and student learning styles 

(Santally; Senteni, 2013). While personalized learning may greatly influence engagement 

among students in advanced math courses, factors like access to technology or classroom 

environment are likely more pertinent to elementary school students (Haverinen-

Shaughnessy; Shaughnessy, 2015; Fabian; Topping; Barron, 2016; Bernacki; Walkington, 

2018). 

Additionally, other factors beyond ML algorithms can influence student 

engagement, such as the availability of extracurricular activities on student engagement, 

which can differ drastically between schools, depending on their availability and support 

system (Buckley; Lee, 2021; Munir; Zaheer, 2021). 

Therefore, the same factors (e.g., technology availability, classroom environment, 

teaching experiences) have different weights in different institutions, classes, and 

students. Consequently, it is essential to acknowledge that there are better routes than a 

one-size-fits-all approach to ML algorithms in education. Each institution can achieve better 

results by having its own ML algorithm tailored to its context, objectives, and goals. 

For example, a university interested in developing an algorithm to predict student 

dropout may have smaller datasets (L’heureux et al., 2017; Zhou et al., 2017) tailored to its 

different schools. Law students may have different behaviors than IT students, for 

example. Therefore, training specialized algorithms in different schools can lead to more 

accurate predictions and interventions tailored to the unique needs of different student 

groups. 

Furthermore, the versatility of ML extends to various educational applications, thus 

demonstrating its potential to transform traditional teaching practices. A prominent 

example is the use of ML algorithms in personalized learning (Santally; Senteni, 2013). 

These algorithms analyze historical data, including student performance, learning styles, 

and past learning behaviors, to identify the resources and instructional approaches most 

likely to benefit individual students. More advanced applications aim to predict which 

learning approaches will lead to significant academic growth for each student. This 

predictive capability empowers educators to make more informed decisions, enhancing 
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the effectiveness of personalized learning strategies and improving overall student 

outcomes. 

The second example considers ML algorithms aimed at predicting student 

performance. These algorithms can predict which students are at risk of falling behind or 

exceeding expectations based on their current trajectories, considering the analysis of the 

historical performance of other students, learning patterns, current students’ 

performance, and other demographic data (Yousafzai; Hayat; Afzal, 2020). Additionally, 

similar algorithms can be used for “what-if” scenario modeling, simulating potential 

changes in student performance outcomes based on adjustments to factors like learning 

environment, instructional approaches, support services, and access to resources 

(Wachter; Mittelstadt; Russell, 2018). 

The third example involves ML algorithms designed to minimize student attrition 

(Beer; Lawson, 2017). Algorithms can rely on data from themes such as work, personal 

information, academic support, financial data, and institutional support to predict the 

individual student likelihood of not completing their enrollment for reasons such as 

withdrawing from a course, failing to attend classes, or canceling their program (Beer; 

Lawson, 2017). These predictions can guide educators in implementing targeted 

interventions to foster student engagement and prevent attrition-related issues, which can 

also impact the institution’s reputation (Beer; Lawson, 2017). 

The fourth example involves algorithms used to improve student engagement 

within the classroom. These algorithms analyze data such as student gender, age, interest 

in the classroom topics, and abilities (Goldberg et al., 2021). Based on this data, the 

algorithms can predict which students or learning groups are experiencing lower 

engagement. With this information, educators can adapt their teaching method 

accordingly, react to disruptions, and improve the effectiveness of their instruction time 

(Goldberg et al., 2021). 

However, a significant challenge arises regardless of the specific strategy chosen 

for developing a new ML algorithm. While contemporary ML models in education often 

demonstrate high accuracy compared to traditional methods, their decision-making 

processes can be challenging to understand and explain. This lack of transparency means 

they are often considered black-box models. The core issue with black-box models is the 
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inability to explain clearly how an algorithm arrives at a prediction (Samek; Müller, 2019). 

For instance, consider a student dropout prediction algorithm that produces contrasting 

predictions for two seemingly similar students. To build trust in the algorithm, educators 

must understand its predictions’ rationale. Unquestioned trust in the algorithm’s 

recommendations is often unacceptable and impractical (Samek; Müller, 2019; Arrieta et 

al., 2020). Even for legal and ethical reasons (Samek; Müller, 2019), it is vital to clearly 

explain the rationale behind the predictions of ML algorithms used in education. 

Additionally, promoting professional development is another compelling reason — 

teachers could gain valuable insights and discover new patterns or teaching strategies by 

understanding the logic behind these algorithms (Samek; Müller, 2019; Arrieta et al., 2020). 

This knowledge sharing can be particularly beneficial for less experienced educators on the 

team. 

Therefore, how can we promote transparent decision-making in education with AI 

tools while maintaining high levels of automation and accuracy? The answer lies in a recent 

advancement in AI research: Explainable AI (XAI) (Samek; Müller, 2019; Gunning et al., 2019; 

Gunning; Aha, 2019; Arrieta et al., 2020). Introduced at the end of the last decade, XAI opens 

up the inner workings of “black-box” ML algorithms to educators and other professionals. 

Utilizing XAI techniques with ML models in educational contexts can foster trust, ensure 

accountability, discover new pedagogical insights, and fulfill legal requirements depending 

on location (Samek et al., 2019; Pessach; Shmueli, 2022). Therefore, this paper 

demonstrates the benefits of understanding XAI methods and how educators and 

administrators can apply these techniques to ML algorithms in their schools and systems. 

EXPLAINING THE DATA SCIENCE PIPELINE FOR EDUCATORS 

To better understand XAI’s relevance, it is essential to understand how ML 

algorithms are built in the first place. Although data science teams use several project 

methodologies to build these ML algorithms for education solutions, the most common is 

CRISP-DM (Schröer; Kruse; Gómez, 2021). Its lifecycle is shown in Figure 1. 

When considering the application of AI in education, educators and educational 

leaders collaborate to determine if AI can effectively address a specific challenge or 

opportunity (the Business Understanding step) (Schröer; Kruse; Gómez, 2021). This process 
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often starts by identifying a specific issue or area for improvement, such as enhancing 

student engagement or optimizing personalized learning pathways. It is essential to note 

that only some educational challenges necessitate complex AI solutions. While there may 

be concerns about over-reliance on AI, more straightforward solutions might be more 

appropriate and cost-effective in many cases. These could involve adjusting existing 

teaching practices, developing informative dashboards to visualize student progress, or 

even creating standard tools or scripts to automate routine tasks. 

In this step, it is also helpful to set the project’s objectives closer to reality and in a 

way that allows data to be retrieved and results to be measured quickly. Now, if there is a 

need to predict something, it is possible to move forward to understand whether there is 

available data within the education institution to move forward. Sometimes, there needs 

to be more data available to create a good ML algorithm, or there are considerable issues 

with data quality (such as unavailable or wrong data). If there are deal-breaking issues with 

the data, the objectives set in the Business Understanding step should be changed 

accordingly before moving forward. 

Every predictive AI algorithm requires a representative dataset that should be 

prepared by a human beforehand. This tabular dataset can be similar to an Excel 

spreadsheet composed of rows and columns (Shwartz-Ziv; Armon, 2022). Each row can 

represent a data point (in our illustrative example, a student), and each column represents 

a data attribute such as previous grades, attendance patterns, participation in 

extracurricular activities, or demographic information (Shwartz-Ziv; Armon, 2022). The ML 

algorithm will be trained over that dataset (Russell; Norvig, 2021); therefore, including as 

many examples as possible is essential while keeping the highest quality standards. Values 

should be standardized, anomalies should be analyzed and treated if needed, and typing 

errors must be fixed. In this Data Preparation stage, the responsibility should be shared 

between educators and data professionals (Viaene, 2013): educators comprehend whether 

that data correctly represents business rules and trends, and data professionals 

understand statistics techniques and visual tools to measure the quality of that information 

quantitatively. Any filters, business rules, and data standardization procedures in this first 

analysis should also be carried over during the prediction of the ML algorithms. 
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Figure 1: CRISP-DM lifecycle. It is a continuous process where the AI model used in education applications is 

regularly updated and improved as it receives new data, ensuring that the insights remain relevant and 
accurate. Source: the author. 

  
Additionally, this dataset enables an AI to understand the patterns exclusive to that 

dataset and, by extension, to that educational institution: Is there a link between a 

student’s previous grades in a given subject and their likelihood of seeking additional 

support? Should we analyze grades concerning learning styles and preferences? Are 

attendance patterns over the last 30 days (or perhaps 60 days) a significant predictor of 

academic struggle? Should factors such as socioeconomic background or participation in 

extracurricular activities be considered, or would they introduce biases and create unfair 

predictions? How can we ensure the dataset is diverse enough to avoid accidentally 

training the algorithm with only limited examples? Each decision taken for any of these 

examples implies training a different version of an ML algorithm, which, in turn, directly 

impacts its performance and fairness. Therefore, the complexity of having an ML algorithm 

starts before its existence. An experienced data scientist working alongside a 

knowledgeable education professional can discover valuable insights by analyzing this 

dataset and reducing the risk of spurious correlations or selecting irrelevant data attributes 

(Calude; Longo, 2017). 
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Now that a good representative dataset has been produced and prepared, the next 

step is to train the ML algorithm appropriately in the Modeling stage (Schröer; Kruse; 

Gómez, 2021). This step means choosing the best ML architecture to discover hidden 

patterns in the data and predict new cases. In the same way that several schools of thought 

exist in fields of study such as Pedagogy and Psychology for education strategies, where 

each strategy has its advantages and disadvantages, the same happens in AI (Domingos, 

2015). There is no single ML algorithm, but instead dozens of different families (Domingos, 

2015). In that sense, it is expected to hear from data scientists terms such as gradient 

boosting, random forest, neural networks, and support vector machines to refer to these 

different strategies. It is also the data scientist’s responsibility to understand the best 

strategy for different education problems, considering characteristics such as data size, 

speed, cost, and generalization. In scenarios where a data scientist is unavailable, it is also 

possible to resort to enterprise products that automate part of the task for education 

professionals: working as “citizen data scientists”, these professionals can submit a 

curated dataset to an automated ML product that will attempt to find the best possible ML 

algorithm (Mullarkey et al., 2019). 

However, who decides how many algorithms should be prepared (i.e., trained)? 

Creating AI for education in the shape of new, tailor-made ML algorithms is the shared task 

of data professionals such as data analysts, data engineers, analytics engineers, data 

scientists, and machine learning engineers (Patil; Bhavsar, 2021; Schröer; Kruse; Gómez, 

2021). These separate technical roles require a particular skill set to prepare and deploy 

robust ML algorithms, keeping in mind business particularities and advanced statistical 

concepts. Sometimes, the algorithm trained does not perform as expected; in that case, 

the data professionals walk back one step and refine the dataset before training a new 

algorithm again (Schröer; Kruse; Gómez, 2021). 

As soon as a good algorithm has been found and evaluated against the project 

objectives set in the Business Understanding step, the next phase is to deploy that model 

on a secure IT server (Schröer; Kruse; Gómez, 2021). It is good to take an ML algorithm that 

is running locally on the computer of a data scientist or an educator and put it on a server 

(Singh, 2021). After all, that algorithm should remain accessible to all stakeholders and be 

open for emergency changes if required, regardless of whether someone is unavailable or 
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on vacation. This step is usually the responsibility of ML engineers, professionals with deep 

computing and data science knowledge, to keep the ML algorithms running without 

significant issues for educators and students affected by them. 

THE PROBLEM OF PURSUING “GREAT” AI 

Even though these algorithms can exhibit high accuracy, enhance educational 

performance, and offer rapid predictions based on extensive historical data, potential 

challenges arise when developing new AI applications in education. 

One critical concern is the potential for bias (Arrieta et al., 2020; Pessach; Shmueli, 

2022). Suppose the historical data used to train the algorithm reflects inherent biases (such 

as inequitable grading practices in the past or an overrepresentation of particular student 

demographics) (Friedler et al., 2019). In that case, the algorithm may unintentionally learn 

and reinforce these biases. 

This bias can result in unfair and harmful outcomes (Arrieta et al., 2020; Pessach; 

Shmueli, 2022), such as underpredicting students’ potential from specific backgrounds or 

systematically overlooking students requiring additional support. Even if an ML algorithm 

demonstrates low statistical error, it does not guarantee fairness or alignment with the 

school’s or district’s equity-focused policies. 

Another danger lies in the overreliance on these algorithms. While AI can provide 

valuable insights, it only captures part of the complexity of human behavior and workplace 

dynamics. Consuming the ML predictions without understanding how that algorithm 

works can lead to spurious correlations or “Clever Hans” behaviors (Samek; Müller, 2019). 

Clever Hans was a famous horse in the early 20th century, known for his apparent ability to 

perform arithmetic and other intellectual tasks. However, it was later discovered that Hans 

responded to subtle, unintentional cues from his handler instead of understanding the 

tasks (Samek; Müller, 2019). Considering AI, an ML model could be trained to predict 

student disengagement or dropout risk. This model might analyze factors like academic 

performance, participation in class, attendance patterns, and access to resources. 

However, similar to the Clever Hans effect, the model could inadvertently capture 

correlations with irrelevant data points, such as the student’s surname or the preferred 

teaching subject. This situation could lead to a false sense of predictive accuracy, with the 
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model’s forecasts based on coincidental, non-causal associations rather than genuine 

indicators of disengagement risk. If there is an over-reliance on these algorithms or a lack 

of interest in understanding how they work, such undesired situations might arise in critical 

applications. 

HOW TO OPEN THE SECRETS OF A SYNTHETIC BRAIN? 

One way to avoid “Clever Hans” behaviors is by reducing the opaqueness of ML 

algorithms (Samek et al., 2019). At the end of the 20th century, more straightforward 

techniques such as linear regression, logistic regression, support vector machines, and 

single decision trees were thoroughly used in enterprise ML applications due to 

performance constraints and because they were intrinsically interpretable to humans 

(Arrieta et al., 2020). At first glance, the decision tree structure with its nodes and branches 

is easy to read by humans since its structure does not require a solid technical background 

to be analyzed (Arrieta et al., 2020). The same applies to a logistic regression with its 

coefficients and intercept, which only requires basic knowledge of Mathematics (Arrieta et 

al., 2020). 

However, the breakthroughs in the 2010s enabled rapid dissemination of more 

complex ML algorithms that unleashed accuracy levels unseen in these intrinsically 

interpretable techniques at the cost of being too complex to be readily understood by 

humans. This is the case with techniques such as random forests, gradient-boosting 

machines, and deep neural networks. In these algorithms, the underlying rationale is 

opaque — hence the “black-box” alias. XAI technical literature often brings up the trade-

off between interpretability and accuracy, as illustrated in Figure 2 (Adadi; Berrada, 2018; 

Gunning et al., 2019; Gunning; Aha, 2019; Arrieta et al., 2020). ML models with higher 

accuracy are located on the left side. Unfortunately, these models also have the lowest 

interpretability. The potential accuracy reduces as the line goes to the right, and the 

interpretability increases. 
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Figure 2: Continuum between interpretability and accuracy. Source: the author. 
 
The lack of transparency in these newer ML models can lead to undetectable 

“Clever Hans” problems and trust issues among educators and other professionals, who 

may feel that automated decisions regarding their work are being made arbitrarily or 

unfairly (Samek et al., 2019). If the professionals cannot understand how the algorithms 

came to a given decision, they can feel dissatisfied and perceive injustice (Binns, 2020). 

Moreover, black-box algorithms make it difficult to identify and correct biases (Pessach; 

Shmueli, 2022). With clear insight into how decisions are made, discriminatory patterns 

might be noticed and addressed, avoiding the perpetuation of classroom inequality. Finally, 

having these black-box algorithms can challenge ensuring compliance with legal and 

ethical standards. With transparency, it becomes easier to audit and validate the 

effectiveness and accuracy of AI tools (Arrieta et al., 2020). This lack of accountability can 

result in the continued use of flawed systems, leading to poor decision-making in critical 

education functions. 

Although the easy route is to avoid these complex techniques, not relying on these 

more advanced algorithms implies losing the competitive advantage bought by newer AI 

(Sagi; Rokach, 2018; Arrieta et al., 2020). This is where XAI comes to the rescue. After 

training an ML algorithm, data scientists can append a second algorithm that summarizes 

and explains the black-box functionality to humans. 

THE DIFFERENT TYPES OF XAI ALGORITHMS 

So, how do we leverage XAI in complex, black-box models in educational contexts? 

If there are different XAI techniques, how do we choose the best one for any ML model 
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currently used in such scenarios? In short, the decision depends on the complexity and 

frequency of the answers required and the target audience. 

Big picture or deep dive? 

The first dimension to be analyzed is the level of interpretability. Consider a complex 

ML model built by data scientists. In several meetings and internal presentations, they 

reported that the model has high accuracy. When presented with a spreadsheet comparing 

the results, the predictions provided by the algorithm are sound. However, they cannot 

show a simple diagram showcasing, in broad terms, how the algorithm works. 

For example, consider the diagram presented in Figure 3. It represents a deep neural 

network where each column represents a layer and each circle represents a node. A human 

cannot explain how it works or provide predictions just by looking at it. Each node has its 

own mathematical formula, and evaluating it during a meeting is often impossible. 

Consider the decision tree shown in Figure 4 as a comparison. It is easier to understand and 

does not require technical explanations of how it works. It can be presented in meetings 

with educators and other stakeholders, and humans can learn from it. This is an example 

of an XAI technique aimed at global interpretability. This technique is called surrogate 

model generation but can also be found with other names such as model distillation and 

model simplification (Samek; Müller, 2019; Arrieta et al., 2020; Molnar, 2023). 

In the same way that an abstract provides a brief understanding of the scope of an 

article, a surrogate provides a summarized explanation of a complex black-box ML model, 

such as a deep neural network. Although these techniques help understand the general 

patterns in data, they hide the nuances and particularities of the model when evaluating 

particular cases, since they favor the generalization and simplification of the model to be 

understood by humans. 
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Figure 3: Example of a diagram of a deep neural network. Source: the author. 
 

In contrast, local interpretability deals with a single individual or case scenario 

separately (Adadi; Berrada, 2018). Therefore, local interpretability techniques attempt to 

explain why the output of a trained ML model came to a specific prediction for a specific 

person or case. 

Local interpretability algorithms have more research and techniques available than 

global interpretability algorithms. A popular example is SHAP, which is based on game 

theory (Lundberg; Lee, 2017). This technique calculates values to determine the effects of 

removing a feature from a model using sampling approximations. These sampling 

approximations allow the calculation of these values without modifying already-deployed 

models within educational institutions. An example is shown in Figure 5 for a public 

database. Similar to a tug-of-war, it is possible to see each value’s contribution towards a 

given prediction. Some values push toward a positive outcome, while others push towards 

a negative outcome. Each attribute contributes with different percentages towards a final 

result. 

What do you want to see? 

After considering whether local or global interpretability is more appropriate, the 

next step is to select the type of explainability that best aligns with the specific educational 

use case. In fact, there are six types of explanations that can be used for black-box ML 
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models: feature relevance explanations, local explanations, explanations by examples, 

explanations by simplification, visual explanations, and textual explanations (Adadi; 

Berrada, 2018; Arrieta et al., 2020). 

 

Feature relevance explanations will measure a feature’s relevance, influence, or 

relative ranking over the predicted output of a black-box ML model (Adadi; Berrada, 2018). 

Therefore, these techniques can explain the main influential features of the whole model 

and the influential features per prediction individually. Data scientists can choose these 

techniques when education professionals need to understand and evaluate the most 

critical attributes of a black-box ML model. Sensitivity Analysis (Ancona et al., 2019) and 

SHAP, as seen previously, are some of the most popular feature relevance explanation 

methods. 

 
Figure 4: Example of a decision tree with a small number of nodes. Source: the author. 

 

On the other hand, local explanations are methods specialized in explaining a small 

part of a larger ML model. Usually, these methods explain single predictions or a smaller 

group of predictions (Adadi; Berrada, 2018; Arrieta et al., 2020). One of the most popular 

local explanation techniques is LIME (Ribeiro; Singh; Guestrin, 2016). Its goal is to provide 

locally faithful explanations instead of trying to explain or generalize the model globally. 
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Figure 5: Example of the SHAP output for a trained black-box model. Source: the author. 
 

The third type of explanation is an explanation by example. These explanations 

focus on displaying other examples close to the inputs informed by a trained ML model 

that, in turn, enable humans to understand the decisions taken by the ML model based on 

its inner relationships and correlations. Going back to the illustrative example of an ML 

algorithm built to predict student attrition, this technique will show the prediction (true or 

false) and some similar students in the past that led to the same outcome. With these 

examples, educators can understand how grounded the model is. Similarly, another type 

of explanation is prototype generation. Prototypes represent a learned concept humans 

can use to understand if the black-box ML model learned concepts correctly, thus avoiding 

the “Clever Hans” scenarios. For instance, what caused the algorithm to identify a student 

needing additional academic support? Was it solely due to a single low-test score, 

potentially a misunderstanding of instructions, or other factors that could be misleading? 
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Or is it a combination of factors, such as consistently low homework completion rates and 

limited engagement in classroom discussions? 

Another example of explanations by example is the counterfactual generation 

(Wachter; Mittelstadt; Russell, 2018). Counterfactuals are modified individuals based on a 

single, original example. “What-if?” analyses fall into this category. Techniques such as DiCE 

(Mothilal; Sharma; Tan, 2020) try to identify the minimum changes required for a given 

individual to change its outcome. Let us explore how this technique can provide better-

informed decisions, considering the illustrative example of a student attrition prediction 

algorithm once again. In this example, the ML algorithm identified a student at potential 

risk of attrition. Counterfactual generation techniques can then provide suggestions for 

minor adjustments that educators and other professionals could make to change that 

prediction. Therefore, the algorithm can provide suggestions such as additional support in 

the classroom, other extracurricular activities, or other proposals within the reach of the 

educational institution. 

The fourth type is an explanation by simplification. These techniques aim to reduce 

the complexity of a black-box model by simplifying it by changing its architecture or 

modifying its parameters. The surrogate models explained earlier are an example of this 

(Molnar, 2023). 

Finally, there are visual explanations and text explanations. Both techniques 

attempt to describe to humans what the algorithm “understands”, using visual methods 

or textual descriptions. They can be combined with other techniques to show educators 

how an ML algorithm works. For example, SHAP is both a visual and a local explanation 

method (Lundberg; Lee, 2017; Arrieta et al., 2020). Methods that rely on these resources 

are instrumental in presentations to educators and other decision-makers. 

CONCLUSION 

This paper highlights the value of responsibly utilizing XAI techniques to interpret 

and evaluate complex ML models in educational contexts. Schools, universities, and other 

educational institutions can leverage sophisticated ML algorithms to optimize decision-

making. While these algorithms sometimes lack transparency, XAI methods can demystify 

their inner workings for non-data scientists, such as educators and other professionals. 
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Therefore, a crucial takeaway is that educators should only feel compelled to limit 

themselves to simpler, more transparent ML approaches if these can adequately address 

their objectives. 

The second point is the flexibility of XAI techniques, allowing them to be tailored to 

different audiences within the educational community. Model surrogates can be invaluable 

for presentations to stakeholders, such as school board members or coordinators, 

providing a simplified explanation of how the model generally functions. Local 

explanations can aid teachers and administrators in working closely with data scientists to 

delve into specific cases, identifying how different factors contribute to individual student 

outcomes. Lastly, counterfactuals allow guidance counselors and support staff to explore 

potential strategies and resource allocation scenarios to improve outcomes for students 

needing additional support. 

The third point emphasizes the importance of collaboration between educators and 

data scientists. Building an effective ML algorithm for educational applications should not 

be solely the responsibility of data scientists. Educators’ expertise in Pedagogy and their 

understanding of the specific learning context are crucial for ensuring the algorithm 

addresses relevant challenges and avoids generating misleading or harmful insights. 

Conversely, the technical knowledge of data scientists is vital for building and fine-tuning 

the algorithm, preventing technical issues like data leakage and overfitting. 

Integrating XAI into complex ML systems in education enhances transparency while 

maintaining high levels of accuracy. These techniques promote a continuous learning cycle 

between educators and AI, revealing previously hidden patterns and accelerating teachers’ 

and administrators’ understanding of factors influencing student outcomes. Additionally, 

XAI promotes the development of equitable algorithms, improving auditability and 

fostering trust in AI, which will become increasingly integral to educational systems in the 

years to come. 
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