Utilização de microalgas para o tratamento de efluentes e produção de biocombustível: uma revisão
DOI:
https://doi.org/10.22292/mas.v12i25.1102Resumo
O aquecimento global é potencializado pelas emissões dos gases geradores do Efeito Estufa (GEE), em especial o CO2, sendo um grande problema que tem preocupado ambientalistas no mundo todo. Atualmente, as microalgas vêm sendo apontadas como potencial para a biofixação do CO2, pois no cultivo de microalga ocorre a mitigação do CO2 e a produção de biomassa rica em compostos de alto valor econômico agregado. Esses seres apresentam alta capacidade fotossintética e taxa de crescimento maior que a dos vegetais superiores, sendo capazes de duplicar sua biomassa em um dia e não seguindo o regime de safras, podendo ser cultivadas em meio salino simples, sem demandar irrigação, herbicidas ou pesticidas. Porém, o cultivo de microalgas para produção de biomassa ainda é oneroso devido a uma abundância de nutrientes inorgânicos utilizados no meio de cultivo. Estudos vêm mostrando que as microalgas podem ser cultivadas em efluentes industriais, com a capacidade de assimilar os compostos orgânicos e inorgânicos presentes no meio, tratando o efluente e produzindo biomassa com um custo mais baixo. A biomassa tem uma vasta aplicação, incluindo a produção de biocombustíveis. As microalgas apresentam grande potencial para produção de biocombustíveis, incluindo biodiesel, biogás, bio-óleo, entre outros. Nesse sentido, este estudo pretende fazer uma revisão bibliográfica dos processos de produção de biomassa de microalgas em efluentes e suas aplicações na produção de biocombustível como uma alternativa sustentável, tanto para tratar o efluente, quanto para produzir biocombustíveis de forma que minimize as emissões de CO2.
Palavras-chave: microalgas; resíduos; biorremediação; biocombustíveis.
Abstract
Greenhouse gas (GHG) emissions can make global warming worse, especially CO2, a major problem that has concerned environmentalists around the world. Currently, microalgae have been identified as having the potential for CO2 biofixation. In the cultivation of microalgae, CO2 mitigation occurs, along with the production of biomass rich in compounds with high economic value. These beings have a high photosynthetic capacity and a higher growth rate than higher plants, are capable of doubling their biomass in one day, do not follow a cropping regime, and can be cultivated in a simple saline medium without requiring irrigation, herbicides or pesticides. However, the cultivation of microalgae for biomass production is still costly due to the large amounts of inorganic nutrients used in the cultivation medium. Studies have shown that microalgae can be cultivated in industrial effluents, being able to assimilate organic and inorganic compounds present in the environment, treating the effluent and producing biomass at a lower cost. Biomass has a wide range of applications, including the production of biofuels. Microalgae have great potential for the production of biofuels, including biodiesel, biogas and bio-oil, not to mention other products. This study aims to carry out a bibliographical review of the production processes for the cultivation of microalgae biomass in effluents and their applications in the production of biofuel as a sustainable alternative for both treating the effluent and producing biofuels in a way that minimizes CO2 emissions.
Keywords: microalgae; residues; bioremediation; biofuels.
Resumen
El calentamiento global es maximizado por las emisiones de los gases de Efecto Invernadero (GEI), en especial el CO2, siendo un gran problema que ha preocupado ambientalistas en todo el mundo. Actualmente, se señala las microalgas como potencial para la biofijación del CO2. En el cultivo de microalga ocurre la mitigación del CO2 y la producción de biomasa rica en compuestos de alto valor económico agregado. Esos seres presentan alta capacidad fotosintética y tasa de crecimiento superior a la de los vegetales superiores, siendo capaces de duplicar su biomasa en un día, no siguen régimen de cosechas, y se los puede cultivar en entorno salino simple, sin demandar irrigación, herbicidas o pesticidas. Sin embargo, el cultivo de microalgas para producción de biomasa todavía es costoso debido a una gran cantidad de nutrientes inorgánicos utilizados en el medio de cultivo. Estudios han demostrado se puede cultivar las microalgas en efluentes industriales, siendo capaz de asimilar los compuestos orgánicos e inorgánicos presentes en el medio, tratando el efluente y produciendo biomasa con un costo menor. La biomasa tiene una vasta aplicación, incluso la producción de biocombustibles. Las microalgas presentan gran potencial para producción de biocombustibles, como biodiésel, biogás, bioaceite, entre otros. A tal sentido, este estudio tiene como objetivo hacer una revisión bibliográfica de los procesos productivos de producción de biomasa de microalgas en efluentes y sus aplicaciones en la producción de biocombustible como una alternativa sustentable para tratar el efluente y producir biocombustibles de forma que minimice las emisiones de CO2.
Palabras clave: microalgas; residuos; biorremediación; biocombustibles.
Referências
ABDELFATTAH, A. et al. Microalgae-based wastewater treatment: mechanisms, challenges, recent advances, and future prospects. Environmental Science and Ecotechnology, v. 13, n. 6, 100205, jan., 2023. Disponível em: https://www.sciencedirect.com/science/article/pii/S2666498422000618. Acesso em: 22 nov. 2023.
ACEBU, P. I. G. et al. Bioethanol production from Chlorella vulgaris ESP-31 grown in unsterilized swine wastewater. Bioresour. Technol., v. 352, 127086, mar., 2022. Disponível em: https://www.sciencedirect.com/science/article/pii/S0960852422004151. Acesso em: 22 nov. 2023.
AHN, Y. et al. Biodiesel production potential of microalgae, cultivated in acid mine drainage and livestock wastewater. Journal of Environmental Management, v. 314, p. 115031, jul., 2022. Disponível em: Biodiesel production potential of microalgae, cultivated in acid mine drainage and livestock wastewater - ScienceDirect. Acesso em: 22 nov. 2023.
ALMEIDA, A. C. et al. Oxidative stress in the algae Chlamydomonas reinhardtii exposed to biocides. Aquatic Toxicology, v. 189, p. 50-59, ago., 2017. Disponível em: https://www.sciencedirect.com/science/article/pii/S0166445X17301510. Acesso em: 22 nov. 2023.
AMBAT, I.; TANG, W. Z.; SILLANPA, M. Statistical analysis of sustainable production of algal biomass from waste water treatment process. Biomass Bioenergy, v. 120, p. 471-478, jan., 2019. Disponível em: https://www.sciencedirect.com/science/article/pii/S0961953418302824. Acesso em: 22 nov. 2023.
ARUTSELVAN, C. et al. Review on wastewater treatment by microalgae in different cultivation systems and its importance in biodiesel production. Fuel, v. 324, p. 124623, set., 2022. Disponível em: https://www.sciencedirect.com/science/article/pii/S0016236122014727. Acesso em: 22 nov. 2023.
BHATTACHARYA, M.; GOSWAMI, S. Microalgae – A green multi-product biorefinery for future industrial prospects. Biocatalysis and Agricultural Biotechnology, v. 25, p. 101580, maio, 2020. Disponível em: https://www.sciencedirect.com/science/article/pii/S1878818119318699. Acesso em: 22 nov. 2023.
BOATENG, A. A. et al. Guayule (Partheniumargentatum) pyrolysis biorefining: Fuels and chemicals contributedfrom guayule leaves via tail gas reactive pyrolysis. Fuel, v. 163, p. 240-247, 2016. Disponível em: https://www.sciencedirect.com/science/article/pii/S001623611500959X. Acesso em: 22 nov. 2023.
BOROWIAK, D.; KRZYWONOS, M. Bioenergy, Biofuels, Lipids and Pigments — Research Trends in the Use of Microalgae Grown in Photobioreactors. Energies, v. 15, n. 15, p. 5357, jul., 2022. Disponível em: https://doi.org/10.3390/ en15155357. Acesso em: 22 nov. 2023.
CARDOSO, L. G. et al. Spirulina sp. as a bioremediation agent for aquaculture wastewater: production of high added value compounds and estimation of theoretical biodiesel. BioEnergy Research, v. 14, n. 1, p. 254-264, ago., 2020. Disponível em: https://doi.org/10.1007/s12155-020-10153-4. Acesso em: 22 nov. 2023.
CASONI, A. et al. Valorization of Rhizoclonium sp. algae via pyrolysis and catalytic pyrolysis. Bioresource Technology, v. 216, p. 302-307, set., 2016. Disponível em: https://www.sciencedirect.com/science/article/pii/S0960852416307064. Acesso em: 22 nov. 2023.
CHAGAS, B. M. E. et al. Stable Bio-oil Production from Proteinaceous Cyanobacteria: Tail Gas Reactive Pyrolysis of Spirulina. Industrial & Engineering Chemistry Research, v. 55, n. 23, p. 6734-6741, maio, 2016. Disponível em: https://pubs.acs.org/doi/full/10.1021/acs.iecr.6b00490. Acesso em: 22 nov. 2023.
CHAGAS, B. M. E. et al. Kinetic study and pyrolysis: GC/MS products analysis of Spirulina platensis cultivated under a different growing medium. Journal of Thermal Analysis and Calorimetry, v. 143, p. 3161-3171, out., 2020. Disponível em: https://link.springer.com/article/10.1007/s10973-020-10330-9. Acesso em: 22 nov. 2023.
CHOKSHI, K. et al. Biofuel potential of the newly isolated microalgae Acutodesmus dimorphus under temperature induced oxidative stress conditions. Bioresource Technology, v. 180, p. 162-171, mar., 2015. Disponível em: https://www.sciencedirect.com/science/article/pii/S0960852415000036. Acesso em: 22 nov. 2023.
CHONG, J. W. R. et al. Advances in production of bioplastics by microalgae using food waste hydrolysate and wastewater: a review. Bioresour. Technol., v. 342, p. 125947, dez., 2021. Disponível em: https://doi.org/10.1016/j.biortech.2021.125947. Acesso em: 22 nov. 2023.
CORRÊA, D. O. et al. Biomass production and harvesting of Desmodesmus subspicatus cultivated in flat plate photobioreactor using chitosan as flocculant agent. Journal of Applied Phycology, v. 31, n. 2, p. 857-866, abr., 2019. Disponível em: https://link.springer.com/article/10.1007/s10811-018-1586-z. Acesso em: 22 nov. 2023.
CORRÊA, D. O. et al. Microalgas na agricultura moderna: Utilização do extrato de Desmodesmus subspicatus na propagação in vitro da orquídea Cattleya warneri. In: SEVERO, I. A.; do NASCIMENTO, T. C.; FAGUNDES, M. B (org.). Microalgas: potenciais aplicações e desafios. Canoas: Mérida Publishers, 2021. Disponível em: https://www.meridapublishers.com/mpad/cap3.pdf. Acesso em: 22 nov. 2023.
DAI, M. et al. Behaviors, product characteristics and kinetics of catalytic co-pyrolysis spirulina and oil shale. Energy Conversion and Management, v. 192, p. 1-10, 2019. Disponível em: https://doi.org/10.1016/j.enconman.2019.04.032. Acesso em: 10 nov. 2023.
DEBIAGI, P. E. A. et al. Algae characterization and multistep pyrolysis mechanism. J. Anal. Appl. Pyrolysis, v. 128, p. 423-436, nov., 2017. Disponível em: http://dx.doi.org/10.1016/j.jaap.2017.08.007. Acesso em: 22 nov. 2023.
DÍAZ, V. et al. Microalgae bioreactor for nutrient removal and resource recovery from wastewater in the paradigm of circular economy. Bioresource Technology, v. 363, p. 127968, 2022. Disponível em: https://doi.org/10.1016/j.biortech.2022.127968. Acesso em: 10 nov. 2023.
DHANDAYUTHAPANI, K. et al. Bioethanol from hydrolysate of ultrasonic processed robust microalgal biomass cultivated in dairy wastewater under optimal strategy. Energy, v. 244, 2022. Disponível em: https://doi.org/10.1016/j.energy.2021.122604. Acesso em: 10 nov. 2023.
ELKASABI, Y. et al. Hydrocarbons from Spirulina Pyrolysis Bio-oil Using One-Step hydrotreating and aqueous extraction of heteroatom compounds. Energy and Fuels, v. 30, n. 6, p. 4925-4932, maio, 2016. Disponível em: https://www.researchgate.net/publication/304587073_Hydrocarbons_from_Spirulina_Pyrolysis_Bio-oil_Using_One-Step_Hydrotreating_and_Aqueous_Extraction_of_Heteroatom_Compounds. Acesso em: 10 nov. 2023.
GARCÍA-GALÁN, M. J. et al. Use of full-scale hybrid horizontal tubular photobioreactors to process agricultural runoff. Biosystems Engineering, v. 166, p. 138-149, fev., 2018. Disponível em: https://www.researchgate.net/publication/322865554_Use_of_full-scale_hybrid_horizontal_tubular_photobioreactors_to_process_agricultural_runoff. Acesso em: 10 nov. 2023.
HARUNA, S.; MOHAMAD, S. E.; JAMALUDDIN, H. potential of treating unsterilized palm oil mill effluent (POME) using freshwater microalgae. J. Biotechnol, v. 14, n. 2, p. 221-225, 2017. Disponível em: https://core.ac.uk/download/pdf/199240967.pdf. Acesso em: 10 nov. 2023.
HOSSEINIA, N. S., SHANGA, H., SCOTTA, J. A. Biosequestration of industrial off-gas CO2 for enhanced lipid productivity in open microalgae cultivation systems. Renewable and Sustainable Energy Reviews, v. 92, p. 458-469, 2018. Disponível em https://www.sciencedirect.com/science/article/pii/S136403211830279X. Acesso em: 22 nov. 2023.
HU, X.; GHOLIZADEH, M. Biomass pyrolysis: A review of the process development and challenges from initial researches up to the commercialisation stage. Journal of Energy Chemistry, v. 39, p. 109-143, 2019. Disponível em: https://doi.org/10.1016/j.jechem.2019.01.024. Acesso em: 10 nov. 2023.
HUANG, Y. et al. Bio-oil production from hydrothermal liquefaction of high-protein high-ash microalgae including wild Cyanobacteria sp. and cultivated Bacillariophyta sp. Fuel, v. 183, p. 9-19, 2016, Disponível em: https://doi.org/10.1016/j.fuel.2016.06.013. Acesso em: 10 nov. 2023.
JANKOWSKA, E.; SAHU, A. K.; OLESKOWICZ-POPIEL, P. Biogas from microalgae: Review on microalgae's cultivation, harvesting and pretreatment for anaerobic digestion, Renewable and Sustainable Energy Reviews, v. 75, p. 692-709, 2017. ISSN 1364-0321. Disponível em: https://doi.org/10.1016/j.rser.2016.11.045. Acesso em: 10 nov. 2023.
JAVED, F. et al. Real textile industrial wastewater treatment and biodiesel production using microalgae. Biomass Bioenergy, p. 165, 106559, 2022. Disponível em: https://www.sciencedirect.com/science/article/pii/S0961953422002215. Acesso em: 10 nov. 2023.
KADIR, W. N. A. et al. Harvesting and pre-treatment of microalgae cultivated in wastewater for biodiesel production: A review. Energy Conversion and Management, v. 171, p. 1416-1429, 2018. ISSN 0196-8904. Disponível em: https://doi.org/10.1016/j.enconman.2018.06.074. Acesso em: 10 nov. 2023.
KHAN, M. I.; SHIN, J. H.; KIM, J. D. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories. Microb Cell Fact, v. 17, n. 36, 2018. Disponível em: https://microbialcellfactories.biomedcentral.com/articles/10.1186/s12934-018-0879-x. Acesso em: 10 nov. 2023.
KOOCAL, S. et al. Bioremediation of ethanol wash by microalgae and generation of bioenergy feedstock. Journal of Applied Phycology, v. 35, p. 183–194, 2023. Disponível em: https://doi.org/10.1007/s10811-022-02866-0. Acesso em: 10 nov. 2023.
KUMAR, A. et al. Influence of waste plastic on pyrolysis of low-lipid microalgae: A study on thermokinetics, behaviors, evolved gas characteristics, and products distribution. Renewable Energy, v. 185, p. 416-430, fev., 2022a. Disponível em: https://www.researchgate.net/
publication/357309543_Influence_of_waste_plastic_on_pyrolysis_of_low-lipid_microalgae_A_study_on_thermokinetics_behaviors_evolved_gas_characteristics_and_products_distribution. Acesso em: 10 nov. 2023.
KUMAR, C. S. P. et al. Phycoremediation of Paper and Pulp Mill Effluent using Planktochlorella nurekis and Chlamydomonas reinhardtii - A Comparative Study. Journal of Environmental Treatment Techniques, v. 8, n. 2, p. 809-817, 2020. Disponível em: https://www.researchgate.net/publication/341040850_Phycoremediation_of_Paper_and_Pulp_Mill_Effluent_using_Planktochlorella_nurekis_and_Chlamydomonas_reinhardtii_-A_Comparative_Study. Acesso em: 10 nov. 2023.
KUMAR, N. et al. Valorization of wastewater through microalgae as a prospect for generation of biofuel and high-value products. Journal of Cleaner Production, v. 362, 132114, ago., 2022. Disponível em: https://www.sciencedirect.com/science/article/abs/
pii/S0959652622017206. Acesso em: 10 nov. 2023.
LA BELLA, E. et al. Multipurpose Agricultural Reuse of Microalgae Biomasses Employed for the Treatment of Urban Wastewater. Agronomy, v. 12, n. 2, 234, 2022. Disponível em: https:// doi.org/10.3390/agronomy12020234. Acesso em: 10 nov. 2023.
LAEZZA, C.; SALBITANI, G.; CARFAGNA, S. Fungal Contamination in Microalgal Cultivation: Biological and Biotechnological Aspects of Fungi-Microalgae Interaction. J. Fungi, v. 8, p. 1099, 2022. Disponível em: https://doi.org/ 10.3390/jof8101099. Acesso em: 10 nov. 2023.
LI, F.; SRIVATSA, S. C.; BHATTACHARYA, S. A review on catalytic pyrolysis of microalgae to high-quality bio-oil with low oxygeneous and nitrogenous compounds. Renewable and Sustainable Energy Reviews, v. 108(C), p. 481-497, 2019. Disponível em: https://ideas.repec.org/a/eee/rensus/v108y2019icp481-497.html. Acesso em: 10 nov. 2023.
LI, L. et al. An Introduction to Pyrolysis and Catalytic Pyrolysis: Versatile Techniques for Biomass Conversion. In: SUIB, S. L. (org.). New and Future Developments in Catalysis Catalytic Biomass Conversion. Elsevier, 2013, p. 173-208. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/B9780444538789000096?via%3Dihub. Acesso em: 10 nov. 2023.
MANMAI, N. et al. Alkali pretreatment method of dairy wastewater based grown Arthrospira platensis for enzymatic degradation and bioethanol production. Fuel, v. 330, p. 125534, 2022. Disponível em: https://doi.org/10.1016/j.fuel.2022.125534. Acesso em: 10 nov. 2023.
MARCILLA, A. et al. A review of thermochemical conversion of microalgae. Renewable and Sustainable Energy Reviews, v. 27, p. 11-16, 2013. Disponível em: https://www.researchgate.net/publication/257812259_Review_of_thermochemical_conversion_of_microalgae. Acesso em: 10 nov. 2023.
MOLAZADEH, M. et al. Influence of CO2 concentration and N: P ratio on Chlorella vulgaris-assisted nutrient bioremediation, CO2 biofixation and biomass production in a lagoon treatment plant. Journal of the Taiwan Institute of Chemical Engineers, v. 96, p. 114–120, 2019. ISSN 1876-1070. Disponível em: https://doi.org/10.1016/j.jtice.2019.01.005. Acesso em: 10 nov. 2023.
NAIRA, V. et al. Biorefinery Approaches for the Production of Fuels and Chemicals from Lignocellulosic and Algal Feedstocks. In: NANDA, S.; VO, D. N.; SARANGI, P. K. (Org.). Biorefinery of Alternative Resources: Targeting Green Fuels and Platform Chemicals. Springer, 2020, p. 141-170. Disponível em: https://doi.org/10.1007/978-981-15-1804-1_7. Acesso em: 10 nov. 2023.
PEREIRA, I.; RANGEL, A.; CHAGAS, B. Microalgae Growth under Mixotrophic Condition Using Agro-Industrial Waste: A Review. In: OPEN, I. (Org.). Biomass. IntechOpen, 2021, p. 1-18.
PEREIRA, M. I. B. et al. Mixotrophic cultivation of Spirulina platensis in dairy wastewater: Effects on the production of biomass, biochemical composition and antioxidant capacity. PLoS ONE, v. 14, n. 10, p. 1-17, 2019. Disponível em: https://journals.plos.org/plosone/
article?id=10.1371/journal.pone.0224294. Acesso em: 10 nov. 2023.
PETER, A. et al. Continuous cultivation of microalgae in photobioreactors as a source of renewable energy: Current status and future challenges. Renewable and Sustainable Energy Reviews, v. 154, 2022. Disponível em: https://doi.org/10.1016/j.rser.2021.111852. Acesso em: 10 nov. 2023.
POURKARIMI, S. et al. Biofuel production through micro- and macroalgae pyrolysis – A review of pyrolysis methods and process parameters. Journal of Analytical and Applied Pyrolysis, v. 142, p. 104599-104599, 2019.
PRABHA, S. et al. Cyanobacterial biorefinery: Towards economic feasibility through the maximum valorization of biomass. Science of The Total Environment, v. 814, p. 152795, 2022. Disponível em: https://doi.org/10.1016/j.scitotenv.2021.152795. Acesso em: 10 nov. 2023.
RAJENDRAN, L.; NAGARAJAN, N. G.; KARUPPAN, M. Enhanced biomass and lutein production by mixotrophic cultivation of Scenedesmus sp. using crude glycerol in an airlift photobioreactor. Biochemical Engineering Journal, v. 161, p. 107684, 2020. Disponível em: https://doi.org/10.1016/j.bej.2020.107684. Acesso em: 10 nov. 2023.
RUSSELL, C.; RODRIGUEZ, C.; YASEEN, M. Microalgae for lipid production: Cultivation, extraction & detection. Algal Research, v. 66, p. 102765, 2022. Disponível em: https://doi.org/10.1016/j.algal.2022.102765. Acesso em: 10 nov. 2023.
SALLA, A. C. V. Cultivo da microalga spirulina platensis em meio Zarrouk diluído e adicionado de resíduo da indústria láctea. 2016. 116 f. Dissertação (Mestrado em Ciência e Tecnologia de Alimentos) - Universidade de Passo Fundo, Passo Fundo, RS, 2016.
SARATALE, R. S. et al. A critical review on anaerobic digestion of microalgae and macroalgae and co-digestion of biomass for enhanced methane generation. Bioresource Technology, v. 262, p. 319-332, ago., 2018. Disponível em: https://doi.org/10.1016/j.biortech.2018.03.030. Acesso em: 10 nov. 2023.
SATYANARAYANA, K. G.; MARIANO, A. B.; VARGAS, J. V. C. A review on microalgae, a versatile source for sustainable energy and materials. International Journal of Energy Research, v. 35, n. 4, p. 291-311, 2011. Disponível em: https://onlinelibrary.wiley.com/doi/abs/10.1002/er.1695. Acesso em: 10 nov. 2023.
SHOBANA, S. et al. Fermentative hydrogen production from mixed and pure microalgae biomass: Key challenges and possible opportunities. International Journal of Hydrogen Energy, v. 42, n. 42, p. 26440–26453, 2017. Disponível em: https://www.researchgate.net/
publication/318922767_Fermentative_hydrogen_production_from_mixed_and_pure_microalgae_biomass_Key_challenges_and_possible_opportunities. Acesso em: 10 nov. 2023.
SUGANYA, T. et al. Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach. Renewable and Sustainable Energy Reviews, v. 55, p. 909-941, 2016. Disponível em: https://doi.org/10.1016/j.rser.2015.11.026. Acesso em: 10 nov. 2023.
TAN, J. S. et al. A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids. Bioengineered, v. 11, n. 1, p. 116-129, jan. 2020. Disponível em: https://www.tandfonline.com/doi/full/10.1080/21655979.2020.1711626. Acesso em: 10 nov. 2023.
TOULIABAH, H. E. et al. A Review of Microalgae-and Cyanobacteria-Based Biodegradation of Organic Pollutants. MDPI, v. 27, p. 1141, 2022. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8839941/. Acesso em: 10 nov. 2023.
UDAYAN, A. et al. Mass cultivation and harvesting of microalgal biomass: Current trends and future perspectives. Bioresource Technology, v. 344B, 126406, jan., 2022. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S096085242101748X. Acesso em: 10 nov. 2023.
VIRUELA, A. et al. Performance of an outdoor membrane photobioreactor for resource recovery from anaerobically treated sewage. Journal of Cleaner Production, v. 178, p. 665-674, 2018. Disponível em: https://doi.org/10.1016/j.jclepro.2017.12.223. Acesso em: 10 nov. 2023.
VO, H. N. P. et al. A critical review on designs and applications of microalgae-based photobioreactors for pollutants treatment. Science of the Total Environment, v. 651, p. 1549-1568, fev., 2019. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/
S0048969718337331. Acesso em: 10 nov. 2023.
WAGENEN, J. J.; DE FRANCISCI, D.; ANGELIDAKI, I. Comparison of mixotrophic to cyclic autotrophic/heterotrophic growth strategies to optimize productivity of Chlorella sorokiniana. Journal of Applied Phycology, v. 27, n. 5, p. 1775-1782, 2015. Disponível em: https://doi.org/10.1007/s10811-014-0485-1. Acesso em: 10 nov. 2023.
WHITTON, R. et al. Microalgae for municipal wastewater nutrient remediation: mechanisms, reactors and outlook for tertiary treatment. Environmental Technology Reviews. v. 4, p. 133-148, 2015. Disponível em: http://dx.doi.org/10.1080/21622515.2015.1105308. Acesso em: 10 nov. 2023.
ZABED, H. M. et al. Biogas from microalgae: Technologies, challenges and opportunities. Renewable and Sustainable Energy Reviews, v. 117, p. 109503, 2020. Disponível em: https://doi.org/10.1016/j.rser.2019.109503. Acesso em: 10 nov. 2023.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Os direitos autorais dos artigos publicados são do(s) autor(es) e do periódico, com os direitos de primeira publicação para a Revista.
Em virtude de aparecerem nesta revista de acesso público, os artigos são de uso gratuito, com atribuições próprias, com aplicações educacionais e não comerciais, de acordo com o creative commons.